mgm6608美高梅app下载-mgm集团美高梅登录

mgm6608美高梅app下载以独家报道、社区、博客和专题策划等方式引领产业潮流,mgm集团美高梅登录为足球爱好者以及体育爱好者提供足球上网,让你无后顾之忧!,拥有多位香港乐坛红星。

数据库系统还维护着满足特定查找算法的数据结

日期:2019-10-02编辑作者:mgm集团美高梅登录

B+Tree

其实B-Tree有许多变种,其中最常见的是B+Tree,比如MySQL就普遍使用B+Tree实现其索引结构。B-Tree相比,B+Tree有以下不同点:

  • 每个节点的指针上限为2d而不是2d+1;
  • 内节点不存储data,只存储key;
  • 叶子节点不存储指针;
  • 下面是一个简单的B+Tree示意。
graph TD
a(1____2____)-->a1(____)
a1-->b(3____4____)
b-->d(15)
b-->e(18)
d-->data1
e-->data2

由于并不是所有节点都具有相同的域,因此B+Tree中叶节点和内节点一般大小不同。这点与B-Tree不同,虽然B-Tree中不同节点存放的key和指针可能数量不一致,但是每个节点的域和上限是一致的,所以在实现中B-Tree往往对每个节点申请同等大小的空间。一般来说,B+Tree比B-Tree更适合实现外存储索引结构,具体原因与外存储器原理及计算机存取原理有关,将在下面讨论。

带有顺序访问指针的B+Tree

一般在数据库系统或文件系统中使用的B+Tree结构都在经典B+Tree的基础上进行了优化,增加了顺序访问指针。

graph TD
a(1____2____)-->a1(____)
a1-->b(3____4____)
b-->d(15)
b-->e(18)
d-->data1
e-->data2
data1-->data2

如图所示,在B+Tree的每个叶子节点增加一个指向相邻叶子节点的指针,就形成了带有顺序访问指针的B+Tree。做这个优化的目的是为了提高区间访问的性能,例如图4中如果要查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。
这一节对==B-Tree和B+Tree==进行了一个简单的介绍,下一节结合存储器存取原理介绍为什么目前B+Tree是数据库系统实现索引的==首选数据结构==。

不该在以下列上创建索引
  • 对于那些在查询中很少使用或者参考的列不应该创建索引。
  • 对于那些只有很少数据值的列也不应该增加索引。
  • 对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。
  • 当修改性能远远大于检索性能时,不应该创建索引。

MySQL的B-Tree索引(技术上说B+Tree)

       在 MySQL 中,主要有四种类型的索引,分别为: B-Tree 索引, Hash 索引, Fulltext 索引和 R-Tree 索引。我们主要分析B-Tree 索引。

        B-Tree 索引是 MySQL 数据库中使用最为频繁的索引类型,除了 Archive 存储引擎之外的其他所有的存储引擎都支持 B-Tree 索引。Archive 引擎直到 MySQL 5.1 才支持索引,而且只支持索引单个 AUTO_INCREMENT 列。

       不仅仅在 MySQL 中是如此,实际上在其他的很多数据库管理系统中B-Tree 索引也同样是作为最主要的索引类型,这主要是因为 B-Tree 索引的存储结构在数据库的数据检索中有非常优异的表现。

     一般来说, MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree 的结构来存储的,也就是所有实际需要的数据都存放于 Tree 的 Leaf Node(叶子节点) ,而且到任何一个 Leaf Node 的最短路径的长度都是完全相同的,所以我们大家都称之为 B-Tree 索引。当然,可能各种数据库(或 MySQL 的各种存储引擎)在存放自己的 B-Tree 索引的时候会对存储结构稍作改造。如 Innodb 存储引擎的 B-Tree 索引实际使用的存储结构实际上是 B+Tree,也就是在 B-Tree 数据结构的基础上做了很小的改造,在每一个Leaf Node 上面出了存放索引键的相关信息之外,还存储了指向与该 Leaf Node 相邻的后一个 LeafNode 的指针信息(增加了顺序访问指针),这主要是为了加快检索多个相邻 Leaf Node 的效率考虑。

 

下面主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式:

数据库索引的特点:

  • 避免进行数据库全表的扫描,大多数情况,只需要扫描较少的索引页和数据页,而不是查询所有数据页。而且对于非聚集索引,有时不需要访问数据页即可得到数据。
  • 聚集索引可以避免数据插入操作,集中于表的最后一个数据页面。
  • 在某些情况下,索引可以避免排序操作。
B-Tree

首先定义一条数据记录为一个二元组[key, data],key为记录的键值,对于不同数据记录,key是互不相同的;data为数据记录除key外的数据。那么B-Tree是满足下列条件的数据结构:

  • d为大于1的一个正整数,称为B-Tree的度。
  • h为一个正整数,称为B-Tree的高度。
  • 每个非叶子节点由n-1个key和n个指针组成,其中d<=n<=2d。
  • 每个叶子节点最少包含一个key和两个指针,最多包含2d-1个key和2d个指针,
  • 叶节点的指针均为null 。
  • key和指针互相间隔,节点两端是指针。
  • 一个节点中的key从左到右非递减排列。
  • 如果某个指针在节点node最左边且不为null,则其指向节点的所有key小于v(key1),其中v(key1)为node的第一个key的值。
    如果某个指针在节点node最右边且不为null,则其指向节点的所有key大于v(keym),其中v(keym)为node的最后一个key的值。
    如果某个指针在节点node的左右相邻key分别是keyi和keyi+1且不为null,则其指向节点的所有key小于v(keyi+1)且大于v(keyi)。
    也就是:每个非终端结点中包含有n个关键字信息: (n,P0,K1,P1,K2,P2,......,Kn,Pn)。其中:
    a) Ki (i=1...n)为关键字,且关键字按顺序升序排序K(i-1)< Ki。
    b) Pi为指向子树根的接点,且指针P(i-1)指向子树种所有结点的关键字均小于Ki,但都大于K(i-1)。
    c) 关键字的个数n必须满足: [ceil(m / 2)-1]<= n <= m-1。

一个d=2的B-Tree示意图:

mgm集团美高梅登录 1

BTree_Search(node, key) {
   if(node == null) return null;
   foreach(node.key)
   {
     if(node.key[i] == key) return node.data[i];
     if(node.key[i] > key) return BTree_Search(point[i]->node);
   }
   return BTree_Search(point[i+1]->node);
}
data = BTree_Search(root, my_key);

其查找节点个数的渐进复杂度为O(logd N)。

B-树

 

1 .B-树定义

B-树是一种平衡的多路查找树,它在文件系统中很有用。

定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:
⑴树中每个结点至多有m 棵子树;
⑵若根结点不是叶子结点,则至少有两棵子树;

⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树;
⑷所有的非终端结点中包含以下信息数据:

      (n,A0,K1,A1,K2,…,Kn,An)
其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,

           Ai 为指向子树根结点的指针(i=0,1,…,n),且指针Ai-1 所指子树中所有结点的关键码均小于Ki (i=1,2,…,n),An 所指子树中所有结点的关键码均大于Kn.

           n  mgm集团美高梅登录 2 为关键码的个数。
⑸所有的叶子结点都出现在同一层次上,并且不带信息(可以看作是外部结点或查找失败的结点,实际上这些结点不存在,指向这些结点的指针为空)。

   即所有叶节点具有相同的深度,等于树高度。

 如一棵四阶B-树,其深度为4.

          mgm集团美高梅登录 3

B-树的查找类似二叉排序树的查找,所不同的是B-树每个结点上是多关键码的有序表,在到达某个结点时,先在有序表中查找,若找到,则查找成功;否则,到按照对应的指针信息指向的子树中去查找,当到达叶子结点时,则说明树中没有对应的关键码。

在上图的B-树上查找关键字47的过程如下:

1)首先从更开始,根据根节点指针找到 *节点,因为 *a 节点中只有一个关键字,且给定值47 > 关键字35,则若存在必在指针A1所指的子树内。

2)顺指针找到 *c节点,该节点有两个关键字(43和 78),而43 < 47 < 78,若存在比在指针A1所指的子树中。

3)同样,顺指针找到 *g节点,在该节点找到关键字47,查找成功。

2. 查找算法

typedef int KeyType ;  
#define m 5                   
typedef struct Node{  
    int keynum;               
    struct Node *parent;       
    KeyType key[m+1];          
    struct Node *ptr[m+1];     
    Record *recptr[m+1];      
}NodeType;                    

typedef struct{  
    NodeType *pt;             
    int i;                    
    int tag;                  
}Result;                      

Result SearchBTree(NodeType *t,KeyType kx)  
{   



    p=t;q=NULL;found=FALSE;i=0;   
    while(p&&!found)  
    {   n=p->keynum;i=Search(p,kx);            
        if(i>0&&p->key[i]= =kx) found=TRUE;   
        else {q=p;p=p->ptr[i];}  
    }  
    if(found) return (p,i,1);                 
    else return (q,i,0);                      
}  

B- 树查找算法分析

从查找算法中可以看出, 在B- 树中进行查找包含两种基本操作:

        ( 1) 在B- 树中查找结点;

        ( 2) 在结点中查找关键字。

       由于B- 树通常存储在磁盘上, 则前一查找操作是在磁盘上进行的, 而后一查找操作是在内存中进行的, 即在磁盘上找到指针p 所指结点后, 先将结点中的信息读入内存, 然后再利用顺序查找或折半查找查询等于K 的关键字。显然, 在磁盘上进行一次查找比在内存中进行一次查找的时间消耗多得多.

      因此, 在磁盘上进行查找的次数、即待查找关键字所在结点在B- 树上的层次树, 是决定B树查找效率的首要因素

        那么,对含有n 个关键码的m 阶B-树,最坏情况下达到多深呢?可按二叉平衡树进行类似分析。首先,讨论m 阶B-数各层上的最少结点数。

       由B树定义:B树包含n个关键字。因此有n+1个树叶都在第J+1 层。

    1)第一层为根,至少一个结点,根至少有两个孩子,因此在第二层至少有两个结点。

    2)除根和树叶外,其它结点至少有[m/2]个孩子,因此第三层至少有2*[m/2]个结点,在第四层至少有2*[m/2]2 个结点…

    3)那么在第J+1层至少有2*[m/2]J-1个结点,而J+1层的结点为叶子结点,于是叶子结点的个数n+1。有:

          mgm集团美高梅登录 4

        也就是说在n个关键字的B树查找,从根节点到关键字所在的节点所涉及的节点数不超过:

      mgm集团美高梅登录 5

3.B-树的插入

  B-树的生成也是从空树起,逐个插入关键字而得。但由于B-树结点中的关键字个数必须≥ceil(m/2)-1,因此,每次插入一个关键字不是在树中添加一个叶子结点,而是首先在最低层的某个非终端结点中添加一个关键字,若该结点的关键字个数不超过m-1,则插入完成,否则要产生结点的“分裂”,

如图(a) 为3阶的B-树(图中略去F结点(即叶子结点)),假设需依次插入关键字30,26,85。

mgm集团美高梅登录 6

1) 首先通过查找确定插入的位置。由根*a 起进行查找,确定30应插入的在*d 节点中。由于*d 中关键字数目不超过2(即m-1),故第一个关键字插入完成:如(b)

mgm集团美高梅登录 7

2) 同样,通过查找确定关键字26亦应插入 *d. 由于*d节点关键字数目超过2,此时需要将 *d分裂成两个节点,关键字26及其前、后两个指针仍保留在 *d 节点中,而关键字37 及其前、后两个指针存储到新的产生的节点 *d` 中。同时将关键字30 和指示节点 *d `的指针插入到其双亲的节点中。由于 *b节点中的关键字数目没有超过2,则插入完成.如(c)(d)

mgm集团美高梅登录 8mgm集团美高梅登录 9

 

 

3) (e) -(g) 为插入85后;

mgm集团美高梅登录 10mgm集团美高梅登录 11mgm集团美高梅登录 12

插入算法:

int InserBTree(NodeType **t,KeyType kx,NodeType *q,int i){   


    x=kx;ap=NULL;finished=FALSE;  
    while(q&&!finished)  
    {   
        Insert(q,i,x,ap);                 
        if(q->keynum<m) finished=TRUE;      
        else  
        {                                 
            s=m/2;split(q,ap);x=q->key[s];  

            q=q->parent;  
            if(q) i=Search(q,kx);   
        }  
    }  
    if(!finished)             
    NewRoot(t,q,x,ap);   
}  

4. B-树的删除

      反之,若在B-树上删除一个关键字,则首先应找到该关键字所在结点,并从中删除之,若该结点为最下层的非终端结点,且其中的关键字数目不少于ceil(m/2),则删除完成,否则要进行“合并”结点的操作。假若所删关键字为非终端结点中的Ki,则可以指针Ai所指子树中的最小关键字Y替代Ki,然后在相应的结点中删去Y。例如,在下图  图4.1( a)的B-树上删去45,可以*f结点中的50替代45,然后在*f结点中删去50。

mgm集团美高梅登录 13

                                图4.1( a)

因此,下面我们可以只需讨论删除最下层非终端结点中的关键字的情形。有下列三种可能:

    (1)被删关键字所在结点中的关键字数目不小于ceil(m/2),则只需从该结点中删去该关键字Ki和相应指针Ai,树的其它部分不变,例如,从图  图4.1( a)所示B-树中删去关键字12,删除后的B-树如图  图4.2( a)所示:

mgm集团美高梅登录 14

                           图4.2( a)

   (2)被删关键字所在结点中的关键字数目等于ceil(m/2)-1,而与该结点相邻的右兄弟(或左兄弟)结点中的关键字数目大于ceil(m/2)-1,则需将其兄弟结点中的最小(或最大)的关键字上移至双亲结点中,而将双亲结点中小于(或大于)且紧靠该上移关键字的关键字下移至被删关键字所在结点中。

[例如],从图图4.2( a)中删去50,需将其右兄弟结点中的61上移至*e结点中,而将*e结点中的53移至*f,从而使*f和*g中关键字数目均不小于ceil(m-1)-1,而双亲结点中的关键字数目不变,如图图4.2(b)所示。

mgm集团美高梅登录 15

 

                           图4.2(b)

       (3)被删关键字所在结点和其相邻的兄弟结点中的关键字数目均等于ceil(m/2)-1。假设该结点有右兄弟,且其右兄弟结点地址由双亲结点中的指针Ai所指,则在删去关键字之后,它所在结点中剩余的关键字和指针,加上双亲结点中的关键字Ki一起,合并到 Ai所指兄弟结点中(若没有右兄弟,则合并至左兄弟结点中)。

[例如],从图4.2(b)所示 B-树中删去53,则应删去*f结点,并将*f中的剩余信息(指针“空”)和双亲*e结点中的 61一起合并到右兄弟结点*g中。删除后的树如图4.2(c)所示。

 mgm集团美高梅登录 16

                     图 4.2(d)

 

B-树主要应用在文件系统

为了将大型数据库文件存储在硬盘上 以减少访问硬盘次数为目的 在此提出了一种平衡多路查找树——B-树结构 由其性能分析可知它的检索效率是相当高的 为了提高 B-树性能’还有很多种B-树的变型,力图对B-树进行改进,如B+树。

 

两种类型的存储

在计算机系统中一般包含两种类型的存储,计算机主存(RAM)和外部存储器(如硬盘、CD、SSD等)。在设计索引算法和存储结构时,我们必须要考虑到这两种类型的存储特点。主存的读取速度快,相对于主存,外部磁盘的数据读取速率要比主从慢好几个数量级,具体它们之间的差别后面会详细介绍。 上面讲的所有查询算法都是假设数据存储在计算机主存中的,计算机主存一般比较小,实际数据库中数据都是存储到外部存储器的。

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。下面详细介绍内存和磁盘存取原理,然后再结合这些原理分析B-/+Tree作为索引的效率。

缺点
  • mgm集团美高梅登录,创建索引维护索引要耗费时间,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

2. InnoDB索引实现

然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同.

1)主键索引:

         MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。

mgm集团美高梅登录 17

               (图inndb主键索引)

 

 

(图inndb主键索引)是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。

 

2). InnoDB的辅助索引

       InnoDB的所有辅助索引都引用主键作为data域。例如,下图为定义在Col3上的一个辅助索引:

mgm集团美高梅登录 18

 

    

       

        InnoDB 表是基于聚簇索引建立的。因此InnoDB 的索引能提供一种非常快速的主键查找性能。不过,它的辅助索引(Secondary Index, 也就是非主键索引)也会包含主键列,所以,如果主键定义的比较大,其他索引也将很大。如果想在表上定义 、很多索引,则争取尽量把主键定义得小一些。InnoDB 不会压缩索引。

      文字符的ASCII码作为比较准则。聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。

      不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助,例如知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有辅助索引都引用主索引,过长的主索引会令辅助索引变得过大。再例如,用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一颗B+Tree,非单调的主键会造成在插入新记录时数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。

 

 InnoDB索引mgm6608美高梅app下载,MyISAM索引的区别:

一是主索引的区别,InnoDB的数据文件本身就是索引文件。而MyISAM的索引和数据是分开的。

二是辅助索引的区别:InnoDB的辅助索引data域存储相应记录主键的值而不是地址。而MyISAM的辅助索引和主索引没有多大区别。

转自:

 

 

 

 

 

本文由mgm6608美高梅app下载发布于mgm集团美高梅登录,转载请注明出处:数据库系统还维护着满足特定查找算法的数据结

关键词:

就流水账记一下,hashbytes函数功能为

转自:http://www.maomao365.com/?p=4732 这些问题可能导致数据值的改变。一般而言,上述问题可能在你使用非二进制串数据类...

详细>>

  在开窗函数出现之前存在着很多用 SQL,分析

三. 分析函数 (AnalyticFunction) 在开窗函数出现之前存在着很多用 SQL语句很难解决的问题,很多都要通过复杂的相关子查...

详细>>

才能使用Transact-SQL修改DEFAULT约束,以下几种情况

使用SSMS数据库管理工具修改DEFAULT约束 1、连接数据库、选择数据表-》右键点击-》选择设计。 2、在表设计器窗口-》...

详细>>

每个表中要有一个主键,数据库只需要满足第三

1.数据库设计三大范式 #实体的完整性 概述:  实体:即表中的一行(一条记录)代表一个实体(entity)实体完整性的作...

详细>>